Testing strong gravity with gravitational waves and Love numbers
نویسندگان
چکیده
منابع مشابه
Probing strong-field gravity and black holes with gravitational waves
Gravitational wave observations will be excellent tools for making precise measurements of processes that occur in very strong-field regions of spacetime. Extreme mass ratio systems, formed by the capture of a stellar mass body compact by a massive black hole, will be targets for planned space-based interferometers such as LISA and DECIGO. These systems will be especially powerful tools for tes...
متن کاملTesting Gravity with Gravitational Wave Source Counts
We show that the gravitational wave source counts distribution can test how gravitational radiation propagates on cosmological scales. This test does not require obtaining redshifts for the sources. If the signal-to-noise ratio (SNR, ρ) from a gravitational wave source is proportional to the strain then it falls as R−1, thus we expect the source counts to follow dN/dρ ∝ ρ−4. However, if gravita...
متن کاملColliding gravitational plane waves in dilaton gravity.
Collision of plane waves in dilaton gravity theories and low energy limit of string theory is considered. The formulation of the problem and some exact solutions are presented PACS: 04.20.Jb , 04.40.Nr , 04.30.Nk , 11.27.+d
متن کاملHelicity-Rotation-Gravity Coupling for Gravitational Waves
The consequences of spin-rotation-gravity coupling are worked out for linear gravitational waves. The coupling of helicity of the wave with the rotation of a gravitational-wave antenna is investigated and the resulting modifications in the Doppler effect and aberration are pointed out for incident high-frequency gravitational radiation. Extending these results to the case of a gravitomagnetic f...
متن کاملProjected Constraints on Lorentz-Violating Gravity with Gravitational Waves
Gravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2017
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/841/1/012035